

# ARKAL SPIN KLIN Automatic Backwash Filtration Systems 2" Compact Stand Alone Operation, Service & Maintenance Manual





www.irrigationglobal.com



# **<u>1. Introduction</u>**

### General

**Arkal Filtration Systems** congratulates you on purchasing the 2" Spin Klin Compact Filter. All Arkal Filtration Systems are easy to install, use and service and do not require special skills to operate them.

For proper operation and maintenance of the filtration system please follow the instructions in this manual.

This Arkal 2" Spin Klin Compact filter is an automatic self-cleaning filter designed for non-hazardous liquids only and within the pressure and temperature framework described in the specifications table.

# **2. Safety Instructions**

Prior to installation or handling of the filter, please read the Installation and Operation Instructions carefully.

- 1. Confirm filter draining prior to service and / or maintenance.
- 2. Take precautions while lifting, transporting or installing the filter.
- 3. Installation of the filter should be performed so as to avoid direct water contact with the electronic control unit.
- 4. Confirm that filter weight, when full, does not exceed support construction limitations.
- 5. Prior to installation confirm that line pressure does not exceed filter's operational pressure rating (10 bar).
- 6. Please note, that during normal operation the filter enters into backwash mode automatically, without prior warning.
- 7. Use only original parts when servicing the filter.
- 8. Arkal cannot accept responsibility for any changes or modifications to the equipment.

#### **Special Note**

Before opening the filter clamp, make sure that there is no system pressure in the filter.



# **<u>3. Description and Operation</u>**

### 3.1 Disc Filtration Technology

Arkal Filtration Systems uses a specially designed disc filtration technology. Thin, color-coded polypropylene discs are diagonally grooved on both sides to a specific micron size. A series of these discs are then stacked and compressed on a specially designed spine. When stacked, the groove on top runs opposite to the groove below, creating a filtration element with a statistically significant series of ridges and valleys, which trap the solids. The stack is enclosed in a corrosion proof and pressure resistant housing.

During the filtration process, the filtration discs are tightly compressed together by the spring's power and the differential pressure, thus providing high filtration efficiency. Filtration occurs while water is percolates from the outer diameter to the inner diameter of the element. Depending on the micron rating, there are from 18 (in 400 micron discs) to 32 (in 20 micron discs) stopping points in each track, thus creating the unique in-depth filtration.

#### Disc Blue Yellow Red Black Brown Green Purple Gray Color 40 Mesh 80 120 140 Micron 400 200 130 100 70 55 40 20

#### Table of Disc Filtration Grades and Color Code





### 3.2 Spin Klin Technology – Spin Klin Spine

#### Spin Klin Spine – The Core of the Spin Klin Filtration System

The Spin Klin<sup>®</sup> discs are stacked on the Spin Klin<sup>®</sup> spine. The discs are color-coded according to micron size, and are assembled to suit your water filtration requirements. The spine assembly has a spring compression unit and an internal piston, which operate during alternate filtration or backwash modes. The spine assembly is specially designed to compress the discs tightly during the filtration process, forcing the water to flow between the grooves and trap the solids.



#### Spin Klin Automatic Backwash Operation

Activated by a predefined command (differential pressure or time) each successive unit of the Spin Klin® system goes into the backwash mode. The inlet valve is shut as the drain is automatically opened. During the backwash process, the compression spring is released and the pressure difference is eliminated. The spine piston rises up, releasing the pressure on the discs. Tangential jets of filtered water are pumped at high pressure in the opposite direction through nozzles at the center of the spine. The discs spin free and clear, loosening the trapped solids. Solids are quickly and efficiently flushed out through the drain.





# 3.3 Mode of Operation



### **The Filtration Process**

Water flows through the inlet valve via the bypass filter pipe and into the 2" SPIN KLIN filter where it is filtered. The filtered water then flows through the outlet valve, for downstream use.

#### The Backwash Process

Command based on pressure differential or time settings is sent from the controller to (two) separate components in the filter:

- 1. Inlet valve Enters backwash mode (entrance closed, drain opens).
- 2. Outlet valve Enters backwash mode (downstream closed, filter bypass opens).

Water flows via the bypass filter screen, through the bypass into the outlet valve. It enters the main filter (which is open), where jets of water flush the grooves in the discs as the discs spin. The water carries away impurities toward the inlet valve. At the end of the backwashing process (20 seconds) the backwash command is withdrawn, the discs are compressed and the SPIN KLIN returns to the filtration mode. The inlet and outlet valves return to the filtration mode. Water flows once again into the filter, carrying with it the impurities that are collected on the bypass filter screen during backwash.



# 4. Technical Data

| Parameters                | METRIC                | US                    |         |
|---------------------------|-----------------------|-----------------------|---------|
| Maximum pressure          | 10 bar                | 145 psi               | (25° t) |
| Maximum flow rate         | 20 m <sup>3</sup> /h  | 88 gpm                |         |
| Minimum flow rate         | 8 m³/h                | 35 gpm                |         |
| Minimum backwash pressure | 2.8 bar               | 40.6 psi              |         |
| Filtration surface area   | 880 cm <sup>2</sup>   | 136.4 in <sup>2</sup> |         |
| Filtration volume         | 1,148 cm <sup>3</sup> | 70 in <sup>3</sup>    |         |
| Backwash water volume     | 33 liters             | 8.7 gal               |         |

# **5. Headloss Chart**



FLOW RATE



# **<u>6. Initial Installation & Operation Instructions</u>**

#### A. Installation

- 1. Remove from package, check contents.
- 2. Ensure correct orientation of INLET & OUTLET.
- 3. Connect the BACKWASH pipe to the Drain port.
- 4. Check that the filter cover is closed correctly.

#### **B.** Controller

- 1. Refer to manufacturer's handbook before installing controller.
- 2. Check that the power is suitable for the solenoids & controller.
- 3. Make sure the solenoid manual switch is set to automatic.
- 4. Check that the pressure differential gauge is connected to the appropriate outlets the high pressure & low pressure pipes (High pressure is to the center of differential pressure meter).
- 5. Set the starting point on the P.D. GAUGE to 5m (7 psi) above the filtration level.

#### C. Start Up Operation

- Start backwash cycle. Check that the system is functioning correctly (to achieve maximum flushing effectiveness, use a minimum pressure of 2.8 bar (40.6 psi).
- 2. The bypass filter can be cleaned manually.



## **Initial Operation**

- Gradually open the inlet valve (make sure that the outlet valve, if installed, is open). <u>WARNING</u> Take precaution while operating the filter as the filter may enter the backwash mode automatically, without prior warning.
- 2. Check the filter assembly and its connections for leaks.
- Perform a backwash cycle by disconnecting the low-pressure tube from the differential pressure indicator (closing of the electrical circuit) – re-connect it immediately as backwash starts.
- 4. Verify that the hydraulic backwash valve closes after 20 seconds.
- 5. Verify that the backpressure during backwash is at least 28m (40.6 psi).
- 6. When the filter is clean, verify that the differential pressure between inlet and outlet does not exceed 3 m (5 PSI).
- 7. Check that the differential pressure indicator is set to 5m (7 psi)
- 8. Perform an additional backwash cycle manually by rotating the operation handle (turn clockwise 90°) located on the solenoid valve





# 7. Maintenance & Periodical Checks

### **1.5V Battery Replacement**

The 1.5V battery enables the electronic control unit's operation. The battery can last for 3000 flushing cycles, but should be replaced every six months. Use **ONLY ALKALINE** type battery.

- 1. Remove the front cover of the electronic control unit
- 2. Disconnect and remove the used batteries.
- 3. Connect new batteries according to the correct polarity.
- Secure the electronic control unit-cover with the plastic cover.
  <u>WARNING</u> Take precaution while operating the filter as the filter may enter the backwash mode automatically, without prior warning.
- 5. Perform a backwash cycle by disconnecting the low-pressure tube from the differential pressure indicator (closing of the electrical circuit) re-connect it immediately as flushing starts.
- 6. Verify that the hydraulic backwash valve closes after 20 seconds.
- Perform an additional backwash cycle manually, by rotating the operation handle (turn clockwise 90°) located on the solenoid.





# FILTRON FT1+DP 3W (DC)

- The "FILTRON FT1+DP 3W" is a backwashing controller for a single station automatic filter.
- For accuracy and simplicity of use, the controller has been equipped with an electronic DP sensor (Differential Pressure sensor).
- The unit activates 3 wired 12v DC latching solenoid.
- For convenience, the controller can be powered either by 6v DC or 12v DC.
- The system will detect problems of endless looping if after 7 consecutive cycles; the DP sensor keeps demanding the start of a new cycle.

#### Setting the interval between cycles and the flushing time per station

Setting the interval between cycles and the flushing duration is done through two blocks of dip switched S1, and S2. The following table summarizes the various possibilities:

|                   | INTERVAL<br>BETWEEN<br>CYCLES |           | FLUSHING<br>DURATION |         |          |  |  |  |  |
|-------------------|-------------------------------|-----------|----------------------|---------|----------|--|--|--|--|
| 1 – ON<br>0 - OFF | S1                            | meaning   | 1 – ON<br>0 - OFF    | \$2     | meaning  |  |  |  |  |
|                   | 1234                          |           |                      | 1234    |          |  |  |  |  |
| 01                | 0000                          | DP only   | 01                   | 0000    | 5 sec.   |  |  |  |  |
| 02                | 1000                          | 5 min.    | 02                   | 1000    | 8 sec.   |  |  |  |  |
| 03                | 0100                          | 10 min.   | 03                   | 0100    | 10 sec.  |  |  |  |  |
| 04                | 1 1 0 0                       | 15 min.   | 04                   | 1 1 0 0 | 12 sec.  |  |  |  |  |
| 05                | 0010                          | 20 min.   | 05                   | 0010    | 16 sec.  |  |  |  |  |
| 06                | 1010                          | 30 min.   | 06                   | 1010    | 20 sec.  |  |  |  |  |
| 07                | 0110                          | 45 min.   | 07                   | 0110    | 25 sec.  |  |  |  |  |
| 08                | 1 1 1 0                       | 1 hour    | 08                   | 1 1 1 0 | 30 sec.  |  |  |  |  |
| 09                | 0001                          | 2 hours   | 09                   | 0001    | 45 sec.  |  |  |  |  |
| 10                | 1001                          | 4 hours   | 10                   | 1001    | 1 min.   |  |  |  |  |
| 11                | 0101                          | 8 hours   | 11                   | 0101    | 1.5 min. |  |  |  |  |
| 12                | 1 1 0 1                       | 12 hours  | 12                   | 1 1 0 1 | 2 min.   |  |  |  |  |
| 13                | 0011                          | 18 hours  | 13                   | 0011    | 3 min.   |  |  |  |  |
| 14                | 1011                          | 24 hours  | 14                   | 1011    | 4 min.   |  |  |  |  |
| 15                | 0 1 1 1                       | 72 hours  | 15                   | 0 1 1 1 | 5 min.   |  |  |  |  |
| 16                | 1111                          | 120 hours | 16                   | 1 1 1 1 | 6 min.   |  |  |  |  |



#### Installing the DP sensor

The DP sensor is equipped with 2 command tubes by which it should be connected to the filter. The red tube goes to the higher pressure (at the inlet), and the black tube to the lower pressure (at the outlet). It is important to put a small filter of 120 mesh between the red tube and the high pressure point.

#### Defining the set-point of the electronic DP sensor

The set point of the electronic DP sensor is defined by the dip switch block S3 as shown in the following table. As long as the pressure difference is lower than the set point there is no flushing request signal generated, but when the pressure difference is higher, it will trigger a flushing cycle within 5 seconds.

| Position No. | S3 (1-ON ; 0-OFF) | Set-                     | point |  |  |  |
|--------------|-------------------|--------------------------|-------|--|--|--|
|              | 1234              | Atm.                     | psi   |  |  |  |
| 00           | 0000              | The sensor is not active |       |  |  |  |
| 01           | 1000              | 0.136                    | 2     |  |  |  |
| 02           | 0100              | 0.272                    | 4     |  |  |  |
| 03           | 1 1 0 0           | 0.408                    | 6     |  |  |  |
| 04           | 0010              | 0.545                    | 8     |  |  |  |
| 05           | 1010              | 0.680                    | 10    |  |  |  |
| 06           | 0 1 1 0           | 0.816                    | 12    |  |  |  |
| 07           | 1 1 1 0           | 0.953                    | 14    |  |  |  |
| 08           | 0001              | 1.089                    | 16    |  |  |  |
| 09           | 1001              | 1.225                    | 18    |  |  |  |
| 10           | 0101              | 1.361                    | 20    |  |  |  |
| 11           | 1 1 0 1           | 1.497                    | 22    |  |  |  |
| 12           | 0011              | 1.634                    | 24    |  |  |  |
| 13           | 1011              | 1.770                    | 26    |  |  |  |
| 14           | 0 1 1 1           | 1.906                    | 28    |  |  |  |
| 15           | 1 1 1 1           | 2.042                    | 30    |  |  |  |



#### The function of the Jumpers JP1, JP7, JP8, JP9

- **JP1 –** For calibration purposes only. During normal operation the upper pin of the jumper is free.
- **JP7 –** For selection of the powering mode 6v or 12v.
- **JP8** Enables or disables detection of "endless looping" problems. When the upper pin of the jumper is free, the detection is enabled.
- **JP9** Immediate or delayed reaction to the DP signal. When the upper pin of the jumper is free, then the reaction to the flushing request signal of the

DP will trigger the next cycle after 5 seconds, otherwise it will be immediate.

#### Summary of the beeping sound indications

1 beep every 15 sec- normal operation

- 2 beeps every 15 sec- endless looping problem detected
- 3 beeps every 15 sec- low battery
- 6 beeps on power up or after RESET indicates being in calibration mode.

#### **Calibration**

Calibration is required whenever the DP sensor is replaced. Prior to entering calibration mode the pressure difference sensed by the sensor must be zero, if necessary, disconnect the red and black command tubes from the system. Change the position of JP1 so that the right side pin remains free and push the RESET button. The 6 beeps will indicate the execution of the calibration process. Change the position of JP1 back to its normal position with the left side pin free, return the command tubes and push the RESET button again.

#### How to handle endless looping problems

The system will detect an "endless looping problem" after 7 consecutive flushing cycles. The problem can be recognized by the double beep sounded every 15 sec, and it means that the flushing request signal keeps arriving from the active DP sensor. In this case the system stops referring to the sensor and continues flushing based on the defined interval between cycles. The cause of the problem must first be detected and removed, and then push the RESET button to signal the controller that the problem was solved.





must be held down for 15 seconds in order to cause a flushing cycle



# FILTRON 1/2/3+DP (AC)

- The "FILTRON 1/2/3+DP" is a controller for backwashing automatic filters of one, two or three stations.
- For accuracy and simplicity of use, the controller has been equipped with an electronic DP sensor (Differential Pressure sensor). Optionally a regular electromechanical DP can be used.
- The unit is equipped with a RESET button that when pushed generates a RESET signal and triggers a flushing cycle.
- The unit is equipped with two LED indicators, the green one indicates that the unit is energized and the red one indicates the operation statuses.
- Optionally a main valve can be controlled in place of the last station.
- Activates solenoids of 24v AC.
- Can be powered either by 110v AC or 220v AC.
- When working by DP, the system will detect problems of endless looping if after 7 consecutive cycles, the start of a new cycle is still requested by the DP sensor.





#### Setting the interval between cycles and the flushing time per station

Setting the interval between cycles and the flushing time per station is done through two blocks of dip switched S1, and S2. The following table summarizes the various possibilities:

|                   | INTERVAL<br>BETWEEN<br>CYCLES |           | FLUSHING<br>TIME PER<br>STATION |         |          |  |  |  |  |
|-------------------|-------------------------------|-----------|---------------------------------|---------|----------|--|--|--|--|
| 1 – ON<br>0 - OFF | S1                            | meaning   | 1 – ON<br>0 - OFF               | S2      | meaning  |  |  |  |  |
|                   | 1234                          |           |                                 | 1234    |          |  |  |  |  |
| 01                | 0000                          | DP only   | 01                              | 0000    | 5 sec.   |  |  |  |  |
| 02                | 1000                          | 5 min.    | 02                              | 1000    | 6 sec.   |  |  |  |  |
| 03                | 0100                          | 10 min.   | 03                              | 0100    | 7 sec.   |  |  |  |  |
| 04                | 1 1 0 0                       | 15 min.   | 04                              | 1 1 0 0 | 8 sec.   |  |  |  |  |
| 05                | 0010                          | 20 min.   | 05                              | 0010    | 9 sec.   |  |  |  |  |
| 06                | 1010                          | 30 min.   | 06                              | 1010    | 10 sec.  |  |  |  |  |
| 07                | 0110                          | 45 min.   | 07                              | 0110    | 11 sec.  |  |  |  |  |
| 08                | 1 1 1 0                       | 1 hour    | 08                              | 1 1 1 0 | 12 sec.  |  |  |  |  |
| 09                | 0001                          | 2 hours   | 09                              | 0001    | 13 sec.  |  |  |  |  |
| 10                | 1001                          | 4 hours   | 10                              | 1001    | 15 sec.  |  |  |  |  |
| 11                | 0101                          | 8 hours   | 11                              | 0101    | 1.5 min. |  |  |  |  |
| 12                | 1 1 0 1                       | 12 hours  | 12                              | 1 1 0 1 | 2 min.   |  |  |  |  |
| 13                | 0011                          | 18 hours  | 13                              | 0011    | 2.5 min. |  |  |  |  |
| 14                | 1011                          | 24 hours  | 14                              | 1011    | 3 min.   |  |  |  |  |
| 15                | 0 1 1 1                       | 72 hours  | 15                              | 0 1 1 1 | 3.5 min. |  |  |  |  |
| 16                | 1 1 1 1                       | 120 hours | 16                              | 1 1 1 1 | 4 min.   |  |  |  |  |

### Installing the electronic DP sensor

The DP sensor is equipped with 2 command tubes by which it should be connected to the filter. The red tube goes to the higher pressure (at the inlet), and the black tube to the lower pressure (at the outlet). It is important to put a small filter of 120 mesh between the red tube and the high pressure point.



#### Defining the set-point of the electronic DP sensor

The set point of the electronic DP sensor is defined by the dip switch block S3 as shown in the following table.

| Position No. | S3 (1-ON ; 0-OFF) | Set-       | point         |  |  |
|--------------|-------------------|------------|---------------|--|--|
|              | 1234              | Atm.       | psi           |  |  |
| 00           | 0000              | The sensor | is not active |  |  |
| 01           | 1000              | 0.1        | 2             |  |  |
| 02           | 0100              | 0.3        | 4             |  |  |
| 03           | 1 1 0 0           | 0.4        | 6             |  |  |
| 04           | 0010              | 0.5        | 8             |  |  |
| 05           | 1010              | 0.7        | 10            |  |  |
| 06           | 0 1 1 0           | 0.8        | 12            |  |  |
| 07           | 1 1 1 0           | 1.0        | 14            |  |  |
| 08           | 0001              | 1.1        | 16            |  |  |
| 09           | 1001              | 1.2        | 18            |  |  |
| 10           | 0101              | 1.4        | 20            |  |  |
| 11           | 1 1 0 1           | 1.5        | 22            |  |  |
| 12           | 0011              | 1.6        | 24            |  |  |
| 13           | 1011              | 1.8        | 26            |  |  |
| 14           | 0 1 1 1           | 1.9        | 28            |  |  |
| 15           | 1 1 1 1           | 2.0        | 30            |  |  |

#### How does an automatic backflush cycle occur ?

An automatic backflush cycle results of pressure difference between the inlet and outlet of the filter. When the pressure difference exceeds the set point for more than 15 seconds, a flushing request signal is generated. When using the electronic DP the actual reading is compared with the value selected by S3. When using an external DP the indication of excess pressure arrives in form of a closed contact at the "External DP" terminals.

#### The function of the Jumpers JP1, JP7, JP8, JP9

- **JP1 –** For calibration purposes only. During normal operation the upper pin of the jumper is free.
- **JP8 –** Enables or disables detection of "endless looping" problems. When the upper pin of the jumper is free, the detection is enabled.



- **JP9** -The jumper is constantly set for immediate reaction to the DP flushing request signal. The lower pin is free.
- **JP11** Defines whether or not a main valve has to be controlled by the system. When the upper pin of the jumper is free, no main valve is defined.

#### Summary of the beeping sound indications

- 1 beep every 15 sec normal operation
- 2 beeps every 15 sec endless looping problem detected
- **6 beeps on power up -** indicates being in calibration mode. Usually this should not happen but when it does, it means that the position of JP1 has been set to calibration mode (lower pin free) the process must be completed as follows: make sure that the pressure difference sensed by the electronic DP is zero (if necessary, disconnect the red and black command tubes), and push the RESET button. Change the position of JP1 back to its normal position and push the RESET button again.

#### Endless looping problems

The problem of endless looping will be declared if after 7 consecutive flushing cycles the request signal for another cycle is still there. A consecutive flushing cycle happens when after termination of a previous flushing cycle (triggered by the DP) the flushing request signal still exists. However, if the flushing signal was removed, but for less than the stabilization time (T0=30 seconds) and then returned, another cycle will be triggered, which will be considered a consecutive cycle. If the stabilization time was completed without appearance of the DP signal, the counter of the consecutive cycles is cleared.

The problem is indicated by 2 beeps of the buzzer every 15 sec and by fast flushing of the red LED. When detecting "endless looping problem", the unit stops referring to the DP sensor and continues flushing by the defined interval only. The cause of the problem must first be detected and removed, and then the RESET button has to be pushed to signal the controller that the problem was solved.



### Timing Diagram



| THE RED LED BEHAVIOR      | THE MEANING                              |
|---------------------------|------------------------------------------|
| Constantly ON             | Waiting between cycles                   |
| Blinking once in a second | Flushing in progress                     |
| Blinking fast             | DP problem, waiting between cycles       |
| 3 blinks per second       | DP problem, flushing by time in progress |
| Double blink              | While changing positions of the switches |
| LED is OFF                | Problem with the controller              |



### **Bypass Filter Maintenance**

#### Instructions

- 1. Close the inlet water valve and release the pressure.
- 2. Use a wrench to release tightening nuts.
- 3. Unscrew the nut completely.
- 4. Twist the bypass filter.
- 5. Remove the internal screen element.
- 6. Rinse the screen element properly.
- 7. Reassemble in reverse order of above steps (5 thru 2).
- 8. Open the 2" inlet valve.



#### **Figure 4: Bypass**







# <u> Spin Klin – System Maintenance</u>

### **Monthly Maintenance**

#### **Check inlet /outlet pressures**

If the pressure differential is above 5 m / 7 PSI activate the backwash of the Spin Klin filtration system.

In the event that the pressure differential remains high check for possible failures.

#### Check for leakages from the drain manifold

If there is a leakage of water during the filtration stage, check for possible failure of the backwash valve seals.

#### Backwash controller performance

Check that the controller timing parameters are correctly set and activate the backwash cycle. In the event of possible failure of the backwash controller, please refer to chapter 8, troubleshooting

#### Winterization

In order to prevent the filter battery from becoming damaged under freezing conditions drain all the water from the filter battery and leave the drain valve open.



### Seasonal Maintenance - Cleaning the Discs

When manual cleaning of the discs is required, please follow the steps described below:

Make sure that system is not under pressure! Release the clamp and remove the cover. (Figure 1) Unscrew the butterfly-nut on the filtration element. (Figure 2) Remove the tightening cylinder. (Figure 3)









Figure 3

Remove the discs (for convenience we recommend using a plastic bag). (Figure 4, 5) Tie each disc set on a string and place them in a cleaning solution (HCL, Chlorine, or other) refer to "Cleaning Recommendations for **Clogged Filtration Discs**".

Thoroughly wash the discs with fresh water and then reassemble the discs on the spines. (Figure 6)

Check that the correct quantity of discs is assembled on the spine: when the discs are pressed with two hands, the top disc should be level with the imprinted circle on the outside of the spine. (Figure 7) Replace on the tightening cylinder and tighten the butterfly-nut, (Figure 8,9)

Reassemble the filter cover and tighten the clamp. (Figure 10, 11)



Figure 4



Figure 5







Figure 7



Figure 8



Figure 9



Figure 10



Figure 11



### **Cleaning Recommendations for Clogged Filtration Discs**

Water-formed deposits may cause clogging of the filter discs. The formation of these deposits depends on the quality of the filtered water and environmental conditions like temperature, pH, light, duration of filtration and more.

#### Common water-formed deposits are:

- Biological or organic deposits (mostly mucous or oily to the touch, beige, brown or green in color)
- Iron oxide (rust) or other metal oxides
- Carbonates (white or gray deposit)
- Combinations of the above

If these deposits cannot be eliminated by pretreatment of the water, we recommend the following cleaning procedure:

#### Material and Equipment

- A well ventilated working place.
- 2 small containers (1 liter), 2 large containers (15 liter) and a stirring stick, all resistant to chemicals, preferably of polypropylene.
- Plastic rope to tie up the disc.
- Sodium Hypochlorite NaOCI -Strong oxidizing liquid, commercial concentration: 10%. Oxidizes and removes organic and biological deposits.
- Hydrochloric Acid HCI -Very corrosive liquid, commercial concentration: 30%.
   Dissolves and removes carbonates, iron oxide, and other deposits.
- Safety equipment: safety glasses, gloves, long pants, long sleeved shirt and shoes.

#### Warning!

While working with chemicals protect yourself with the necessary safety equipment:

- Safety glasses, gloves, protective clothing.
- Work in a well-ventilated area.
- Follow the manufacturer's instructions.



#### **Cleaning Organic and Biological Deposits**

• Open the filter and remove dirty discs.

Warning – Never open the filter before the pressure has been released.

- Arrange the discs loosely on the plastic rope.
- Prepare a 5% Sodium Hypochlorite solution:
  - 1) Pour 5 liters of water into one of the large containers.
  - 2) Add 5 liters of (10%) Sodium Hypochlorite into the water.
- Soak the discs in the solution so that both sides are covered. To achieve maximum cleaning, agitate the discs several times with a stirring stick.
- Contact time with cleaning solution: up to 8 hours.
- Remove the discs carefully from the solution, put them in the second large container and rinse them very well with clean water before placing them back in the filter.
- We recommend flushing the cleaned discs again in the filter to ensure that all chemical residues are removed.

The cleaning solution can be used for several sets of discs. As the cleaning activity of the solution deteriorates, it may be necessary to soak the discs for a longer time.

#### **Cleaning Carbonates and Iron Deposits**

- Open the filter and remove the dirty discs.
- Arrange the discs loosely on the plastic rope.
- Prepare a 5% Solution of Hydrochloric Acid:
  - 1) Pour 10 liters of water into one of the large containers.
  - 2) Carefully add 2 liters of (30%) Hydrochloric Acid into the water.

Soak the discs in the solution so that both sides will be covered.

PLEASE NOTE: Carbonates react violently with hydrochloric acid (foaming, gas evolution).

To achieve maximum cleaning, agitate the discs several times with a stirring stick.

- Contact time with cleaning solution: 1 8 hours.
- Remove the discs carefully from the solution and rinse them well with clean water before placing them back in the filter.
- We recommend flushing the cleaned discs again in the filter to ensure that all chemical residues are removed.

The cleaning solution can be used for several sets of discs. It may be necessary to soak the discs for a longer period of time as the cleaning activity of the solution deteriorates.



#### **Cleaning Complex Deposits**

If the composition of the deposit is not known, perform the following test:

- Take 5 discs for the test.
- Soak 2 discs in a 5% Sodium Hypochlorite Solution.
  Preparation of the solution:
  Pour 1 cup of water into a small container, then add 1 cup of (10% NaOCI)
  Sodium Hypochlorite.
- Soak 2 discs in a 5% Hydrochloric Acid Solution.
  Preparation of the solution:
  Pour 2½ cups (= 500ml) of water into a small container, then add carefully
  - $\frac{1}{2}$  cup (= 100ml) of Hydrochloric Acid (30% HCl).
- Keep one disc as a control.
- Observe the cleaning process:
  If one of the solutions removes all of the deposit, clean the discs in that solution according to the instructions above.
  If neither solution removes the deposit completely, continue with the test procedure.
- Remove the discs from both solutions, rinse them well with water and soak them in the second solution: put the two discs, which have been in the Sodium Hypochlorite Solution, in the Hydrochloric Acid Solution, and the other way round.
- Check the cleaning process:

If one of the treatments removes all of the deposit, clean all of the discs following the same two-step procedure in the exact same order. Rinse the discs well between the two cleaning processes.

If the deposits haven't been completely removed, send a set of untreated discs to the laboratory for further examination.



# 8. Troubleshooting



### Contact your local distributor



### Identifying Malfunctions in the 2" Spin Klin System

#### **Continuous or Non-stop Backwashing**



Contact your local distributor



# 9. Spare Parts

| DESCRIPTION PART NUMBER QI | Y BSPT+ 112" TRHEAD 2200 2205 | R COVER WIO STOPE 2501 0210 | SEAL EPDM 5005 0002 | AL CLAMP 5042 0030 1 | R ELEMENT 2123 1 1 | x2 PL VALVE STRAIGHT 5062 0224 2 | TER 2inch 1899 0051 1 | 4 ADAPTOR 5022 5011 1 | DNNECT 5022 5042 1 | 1. ANGLE 5022 3041 1 | CONNECT PIPE 265mm 2253 2265 1 | 5078 0026 2   | R FILTER 5052 0002 2 | N ANGLE 5078 0034 3 | x1/4 5054 0212 1 | IPPLE 114 TEFEN 5078 0064 2 | FEN REDUS 5078 0066 2 | OPER 3mm HOL 2511 0103 2 | DRT SEAL      5006 0004      2 | N ANGLE 5078 0036 1 | 2253 4197 2 | DESCRIPTION        | 2" S.K. FILTERS BATTERY | CATALOGUE No:<br>1562M02011 | FILE CODE NAME DATE SIGNAT |               | NAME VALE FILE CODE DRAWING OF MANIFOLD PACK OF |
|----------------------------|-------------------------------|-----------------------------|---------------------|----------------------|--------------------|----------------------------------|-----------------------|-----------------------|--------------------|----------------------|--------------------------------|---------------|----------------------|---------------------|------------------|-----------------------------|-----------------------|--------------------------|--------------------------------|---------------------|-------------|--------------------|-------------------------|-----------------------------|----------------------------|---------------|-------------------------------------------------|
| ITEM NO.                   | 1 2" SK BOD'                  | 2 2"-3" FILTEF              | 3 2" COVER          | 4 2"-3" ARKA         | 5 2" SK FILTE      | 6 BERMAD 2<br>6 FLOW             | 7 BYPASS FIL          | 8 1 1/4x1 1/2         | 9 2x40 M_C(        | 10 1 1/4x40 N        | 11 40mm PE (                   | 12 T 8x1l8"x8 | 13 1/4 FINGE         | 14 8x1/8 TEFE       | 15 VALVE 1/2     | 16 DOUBLE N                 | 17 1/8×1/8 TE         | 18 GAUGEST               | 19 GAUGEPC                     | 20 8x1/4 TEFE       | 21 SPACER   | IFIC. DATE         | PROJECT                 | RKAL TITLE                  | LTRATION SYSTEM            | ET-ZERA 15135 |                                                 |
| REF 740                    |                               |                             |                     |                      |                    |                                  |                       |                       |                    |                      |                                |               |                      |                     |                  | C DRAIN Î TTT               |                       |                          |                                |                     |             | $10  10  210\pm 2$ | 562±5                   |                             |                            |               |                                                 |



#### ARKAL 2" S.K. FILTER Cat. No: 1225 0\_\_\_\_ THREADED CONNECTION Cat. No: 1225 1 VICTAULIC OUT CONNECTION

#### PARTS LIST

|     | 1         |                                     | 1         |     |
|-----|-----------|-------------------------------------|-----------|-----|
| No: | CAT. No:  | DESCRIPTION                         | MATERIALS |     |
| 1   | 2501 0220 | FILTER COVER                        | R.P.A.    |     |
|     | 2501 9220 | TRASPARENT COVER                    | P.C.      |     |
| 2.  | 5005 0002 | HYDRAULIC SEAL                      | EPDM      |     |
| З.  | 5042 0030 | CLAMP                               | S.S.      |     |
| 4.  | 2199 1002 | SPINE COMPLETE                      |           |     |
| 4.1 | 2506 0224 | "BUTTERFLY" NUT                     | R.P.A.    |     |
| 4.2 | 2506 0226 | TIGHTENING CYLINDER                 | R.P.A.    |     |
| 4.3 | 2530 0216 | PISTON                              | R.P.A.    |     |
| 4.4 | 2253 1225 | SLIDING WASHER                      | P.E.      |     |
| 4.5 | 2022 1    | DISCS SET                           | P.P.      |     |
| 4.6 | 5076 0009 | ABRASION SHIELD                     | S.S.      |     |
| 4.7 | 5006 0008 | CONE MEMBRANE                       | N.R.      |     |
| 5.  | 2234 0324 | COMPLETE ADAPTER                    |           |     |
| 5.1 | 5003 2234 | "O" RING 2-234                      | EPDM      |     |
| 5.2 | 2503 0324 | SPINE ADAPTER                       | R.P.P.    | 4 — |
| 5.3 | 5003 2237 | "O" RING 2-237                      | EPDM      |     |
| 6   | 2224 0252 | 2" S.K. BODY THREADED OUT COMPLETE  |           |     |
| υ.  | 2224 0253 | 2" S.K. BODY VICTAULIC OUT COMPLETE |           |     |
| 6.1 | 2500 0252 | 2" S.K. BODY THREADED OUT           | R.P.A.    |     |
| 6.2 | 2500 0253 | 2" S.K. BODY VICTAULIC OUT          | R.P.A.    |     |
| 7.  | 5076 0028 | BUTTERFLY NUT WRENCH                | G.S.      |     |
|     |           |                                     |           |     |



#### MATERIALS:

- R.P.P. REINFORCED POLYPROPYLENE
- R.P.A. REINFORCED POLYAMIDE
- P.P. POLYPROPYLENE
- S.S. STAINLESS STEEL
- N.R. NATURAL RUBBER
- G.S. GALVANIZED STEEL
- P.C. POLYCARBONATE P.E. POLYETHYLENE







### **Limited Warranty**

ARKAL FILTRATION SYSTEMS ("ARKAL FILTRATION SYSTEMS") warrants to the original end user ("CUSTOMER") who purchased ARKAL FILTRATION SYSTEMS products directly from Arkal or through one of its authorized distributors, that such products will be free from defect in material and/or workmanship for the term set forth below, provide that such products are properly installed, used and maintained in accordance with ARKAL FILTRATION SYSTEMS instructions, written or verbal.

Should such products prove defective within one year from the original purchase date by the customer, and subject to receipt by ARKAL FILTRATION SYSTEMS or its authorized representative, of written notice thereof from the customer within 30 days of discovery of such defect or failure - ARKAL FILTRATION SYSTEMS will repair or replace, at its sole discretion, any item proven to be defective.

ARKAL FILTRATION SYSTEMS shall not be liable, nor does this warranty extend to any consequential or incidental damages or expenses of any kind or nature, regardless of the nature thereof, including without limitation, injury to persons or property, loss of use of the products, loss of goodwill, loss of profits or any other contingent liabilities of any kind or character alleged to be the cause of loss or damage to the purchaser.

This warranty does not cover damage or failure caused by misuse, abuse or negligence, nor shall it apply to such products upon which repairs or alterations have been made by other than an authorized ARKAL FILTRATION SYSTEMS representative.

This warranty does not extend to components, parts or raw materials used by ARKAL FILTRATION SYSTEMS but manufactured by others, which shall be only to the extent warranted by the manufacturer's warranty.

No agents or representatives shall have the authority to alter the terms of this warranty nor to add any provisions to it not contained herein or to extend this warranty to anyone other than ARKAL FILTRATION SYSTEMS customers.

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, EXCEPT THIS WARRANTY WHICH IS GIVEN IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

